A-posteriori Error Analysis for Mixed Formulation of Linear Parabolic Problems
نویسندگان
چکیده
In this paper we present a-posteriori error estimator for the mixed formulation of linear parabolic problem, used in designing an efficient adaptive algorithm. Our spacetime discretization consist of lowest order Raviart-Thomas finite element over graded meshes, and discontinuous Galerkin method with varying time-steps. Finally, several examples show that the proposed method is efficient and reliable.
منابع مشابه
An adaptive least-squares mixed finite element method for pseudo-parabolic integro-differential equations
In this article, an adaptive least-squares mixed finite element method is studied for pseudo-parabolic integro-differential equations. The solutions of least-squares mixed weak formulation and mixed finite element are proved. A posteriori error estimator is constructed based on the least-squares functional and the posteriori errors are obtained. Keywords—Pseudo-parabolic integro-differential eq...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS
Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...
متن کاملA Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Parabolic Equations
In this paper, we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates for both the sta...
متن کاملA Posteriori Error Estimates in the Maximum Norm for Parabolic Problems
We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a pos...
متن کامل